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Summary

The initiation of adaptive immune responses requires antigen presentation to
lymphocytes. In particular, dendritic cells (DCs) are equipped with special-
ized machinery that promote effective display of peptide/major histocompat-
ibility complexes (MHC), rendering them the most potent stimulators of
naive T lymphocytes. Antigen cross-presentation to CD8+ T cells is an impor-
tant mechanism for the development of specific cytotoxic T lymphocyte
(CTL) responses against tumours and viruses that do not infect antigen-
presenting cells. Here, we review recent findings concerning antigen cross-
presentation to CD8+ T lymphocytes. Specific subtypes of DCs in the mouse
have been defined as being especially endowed for antigen cross-presentation,
and a human homologue of these DCs has recently been described. DC vac-
cination strategies for the prevention and treatment of human diseases have
been under investigation in recent years, but have not generally reached sat-
isfying results. We here provide an overview of new findings in antigen cross-
presentation research and how they can be used for development of the next
generation of human DC vaccines.
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Antigen cross-presentation to CD8
+ T cells,

a historical perspective

Dendritic cells (DCs) are key players in initiation and control
of adaptive immune responses due to their exquisite ability
to present antigenic fragments in the form of peptide/major
histocompatibility complexes (MHC) to T cells [1–3].
Endocytosed antigens acquired from the outside environ-
ment are generally presented as peptide/class II MHC com-
plexes, while antigens acquired from within the cell are
predominantly presented as peptide/class I MHC complexes.
This dichotomy raises one complication: how are DCs able
to present viral or tumour peptides on class I MHC if these
peptides are not endogenously produced? In 1976 a third
mechanism was identified, whereby exogenous class I MHC-
restricted antigens are captured by DCs, resulting in the
induction of CD8+ cytotoxic T lymphocyte (CTL) responses
[4]. This process was coined ‘antigen cross-priming’. Cross-
priming is important in anti-viral and anti-tumour immu-
nity [5,6]. Mouse experiments in which non-haematopoietic
cells were virally infected showed a requirement for cross-
presentation by haematopoietic cells to elicit virus-specific
CTL responses [5,7]. Secondly, antigen cross-presentation is

relevant to the induction of central immune tolerance in the
thymus [8] and peripheral tolerance in the draining lymph
node [9], a process referred to as ‘cross-tolerance’ [5,8]. In
the 1990s, the term ‘cross-presentation’ was introduced to
describe the antigen-presentation process underlying cross-
priming and cross-tolerance. Experimental support again
came from mouse model-based experiments, such as using
the receptor interacting protein-membrane-bound ovalbu-
min (RIP-mOVA) mice that express a membrane-bound
form of ovalbumin on restricted tissues including pancreatic
b cells [9]. Analysis of RIP-mOVA thymus and control
thymus grafted mice after being injected with OVA-specific
CD8+ T cells from OT-I transgenic mice suggested that OVA-
specific CD8+ T cells were lost and probably deleted after
entry in the peripheral tissues [9]. Also, the inability of DCs
to cross-present results in the accumulation of fully func-
tional self-reactive CD8+ T cells that can cause autoimmune
disease [10].

DCs, B cells, monocytes and macrophages are classified as
prototypic professional antigen-presenting cells (APC) by
virtue of their constitutive expression of class II MHC
molecules. Professional APCs are critically important for
induction of protective CD8+ T cell responses against normal
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‘self ’-antigens [11], tumour antigens [11,12] and viruses
[13]. As was already shown elegantly in 1996, the injection of
OVA peptide-specific naive CD8+ T cells into non-irradiated
RIP-mOVA mice results in selective presence of these T cells
in the draining lymph nodes of OVA-expressing tissues (i.e.
pancreas and kidney) and not other lymph nodes [11]. These
data supported the notion that cross-presentation is a con-
stitutive mechanism, whereby T cells can be primed to anti-
gens that are present in non-lymphoid tissues that are
normally not patrolled by circulating naive T cells.

The activation of CTL upon recognition of infection- or
tumour-associated peptides encompasses risk to autoim-
mune T cell reactivity and is therefore under tight control.
Under homeostatic as well as inflammatory conditions,
tissue-specific DCs and, to a lesser degree, macrophages,
execute peripheral tolerance control by their ability to dis-
criminate between cross-presentation and cross-tolerization
[14,15]. Also liver sinusoidal endothelial cells are capable of
cross-presenting soluble exogenous antigen to CD8+ T cells
leading to tolerance [16]. Other cell types are not yet
described to have the ability to induce cross-tolerance under
those non-inflammatory conditions. During infection,
however, more cell types were recently identified as being able
to cross-prime foreign peptides and elicit CTL responses.
Thus far, B cells [17,18], neutrophils [19,20], basophils [21],
mast cells [22] and endothelial cells [23] were also demon-
strated to be capable of cross-presentation in vitro. Cross-
presentation by basophils was even shown to be relevant in an
in vivo experimental autoimmune encephalitis model [22].
However, the involvement of the other cell types in cross-
presentation in vivo has not yet been shown, and particularly
DCs appear pivotal for antigen cross-presentation in various
circumstances as, for example, demonstrated by a lack of CTL
responses against cell-associated antigens after depletion of
DCs in vivo [24]. The efficiency of DCs to cross-present
exogenous antigens as peptide/class I MHC in vivo was
emphasized in a direct comparison study, where cross-
presentation showed near equal efficiency as presentation of
peptide/class II MHC derived from the same antigen [25].

Specific DC subsets are associated with antigen cross-
presentation, and initial descriptions for these subsets are
now reported in humans. Various mechanisms that facilitate
cross-presentation by DC subsets were especially investi-
gated in the last decade, mainly in mouse-based
experiments. Human DC research that involves antigen
cross-presentation is lagging behind. This review focuses on
the mechanisms and cells that are known to be relevant for
induction of effective CD8+ T cell responses to endocytosed
antigens.

Mechanisms in DCs that facilitate antigen
cross-presentation

The ability of DCs to cross-present antigen to T lymphocytes
is not represented uniformly in all DC subsets. Some DC

types are more specialized in antigen transport from periph-
eral tissues to secondary lymphoid tissues, whereas others
are non-migratory and are specialized at generation and
display of peptide/MHC complexes to naive T cells that
reside within lymph nodes. The role of the different subsets
of DCs in antigen cross-presentation has been studied exten-
sively in mice. DCs are characterized in the literature as
lineage-marker-negative (CD3, 14, 15, 19, 20 and 56) and
high expression of MHC class II molecules. Mouse DCs are
further marked by expression of the integrin CD11c, and
additional delineation can be made using additional cell
surface markers [3,26–28].

Although some aspects of the human and mouse DC
systems appear to be well conserved, other functions do not
relate. In mice, a subset of resident DCs, characterized by
high surface expression of CD8a [29], is associated with the
ability to cross-present exogenous (such as necrotic) anti-
gens to CD8+ T lymphocytes [30–36]. The transcription
factor Batf3 is crucial for the development of these CD8a+

DCs and absence of Batf3 in gene-targeted mice results in
defective cross-presentation [37]. In 2010, the human
equivalent of the mouse CD8a+ DCs was described. This
human DC subset, characterized by the expression of
BDCA-3 (CD141) [28], Clec9A [38,39] and the chemokine
receptor XCR1 [40] was present in human peripheral blood,
tonsils, spleen and bone marrow and represents a major
human DC subset expressing Toll-like receptor-3 (TLR-3)
[27,41]. Results indicate a dominant role for CD141+ DCs in
cross-presentation of necrotic cell-derived antigens to CD8+

T lymphocytes [27], as well as superior cross-presentation of
soluble or cell-associated antigen to CD8+ T cells when com-
pared directly with CD1c+ DCs, CD16+ DCs and plasmacy-
toid DCs cultured from blood extracted from the same
donors [40]. The role of this DC subset can now be scruti-
nized in experimental setups in laboratories across the globe.
Although culturing from haematopoietic precursors is pos-
sible, the low frequency of naturally occurring CD141+ DCs
[1 in 104 peripheral blood mononuclear cells (PBMCs)] pro-
vides a further challenge before the ultimate goal of transla-
tion to clinical application using DCs to alter immune
responses can be achieved.

Mechanisms that promote antigen cross-presentation that
are inherent to immature DCs include their ability to actively
control alkalinization of their phagosomes [42], their low
lysosomal proteolysis [43] and expression of protease inhibi-
tors [44], thereby increasing the propensity that exogenous
antigens engulfed in the phagosome lumen are cross-
presented to CD8+ T cells [43]. However, there are also
mechanisms restricted to DC subsets or to DC maturation
stages, resulting in variability in cross-presentation efficiency.
In some instances, cross-presentation ability by DCs corre-
lates with expression of specific uptake receptors or proteins
[45,46]. In addition, the nature of the antigen itself also
creates a bias towards presentation via class I or class II MHC
molecules [45].

Antigen cross-presentation by dendritic cells
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Once exogenous antigen is internalized by DCs, distinct
mechanisms take place by which antigen-derived peptides
are cleaved from larger antigen fragments and loaded onto
the class I MHC molecules. To allow for display of exog-
enously acquired antigen in the form of peptide/class I MHC
complexes, the antigen undergoes proteolytic processing to
create an appropriate-sized fragment. Further restriction to
the formation of peptide/class I MHC complexes involves
the amino and carboxyl ends of the peptide to harbour
charged anchor residues that complement those of the
peptide-binding groove of the class I MHC molecule.
Because the proteasome is demonstrated to be the main
source of peptides in the classical MHC class I pathway, it is
not unexpected that proteasome activity is thought to be
essential for cross-presentation [13,45,47,48]. However,
other reports have shown proteasome-independent process-
ing of the exogenous protein via specific proteases [49,50].
This controversy has led to two different models, the domi-
nant cytosolic pathway and the vacuolar pathway (Fig. 1).

The cytosolic pathway proposes that antigen is trans-
ported into the cytosol after internalization where protea-
some degradation ensues, prior to transportation to the
location of peptide assembly into peptide/class I MHC

molecules. Based on the mechanism used by DCs corrobo-
rated by the size-restriction of the antigen, internalization of
antigens occurs by receptor-mediated endocytosis, pinocy-
tosis (components < estimated 0·5 mm) or phagocytosis
(components > estimated 0·5 mm). Upon internalization,
antigens are located initially in phagosomes. These phago-
somes fuse with early endosomes (characterized by a near-
neutral, slightly acidic pH) and later with late endosomes
(pH approximately 5·5). Accordingly, ultimate degradation
into single amino acids takes place after fusion with acidic
lysosomes, a route that is more prevalent in macrophages
than in DCs [51]. Degradation within lysosomes occurs by
proteases and hydrolases that have their enzymatic optimum
close to the acidic pH found in lysosomes (pH 4·8) for
antigen degradation [52], as well as degradation of cellular
constituents as part of the normal cell homeostasis. The
changes that occur to phagosomes in the endocytosis
pathway is termed ‘phagosome maturation’. Phagosome
maturation is important in regulation within the immune
system, in the decision process as to whether an immune
response is triggered or tolerance is established. The impor-
tance of this route is exemplified by changes in cell degrada-
tion that have been shown to result in autoimmune disease

Mouse Human

a

b

c
d

Fig. 1. Proposed pathways of antigen cross-presentation. Yellow area (left side) relates to mechanisms described only in mice so far, whereas the

gradient towards the red area (right side) depicts the transient increase in knowledge of antigen cross-presentation mechanisms in human cells. By

receptor-mediated endocytosis, the antigen (red rod shape) is engulfed into a phagosome and subsequently processed in a cytosolic proteasome-

(a,b,c) or endosomal protease-dependent (d) manner. For proteasome-mediated degradation the antigen is transported across the endosomal

membrane into the cytosol by Sec61, accessed by the proteasome via endoplasmic reticulum (ER)–endosome fusion (c) or a delivery vesicle derived

from the ER (a,b). After processing by the proteasome, possibly assisted by cytosolic peptidases, peptides either re-enter the endosomal

compartment via transporter associated with antigen processing (TAP) where loading on class I major histocompatibility complex (MHC) may

occur (a), or the canonical class I MHC presentation pathway in the ER (b,c). After proteolytic processing by endosomal pathway-resident proteases,

peptides are loaded onto class I MHC molecules by replacing either exogenous peptide (recycling) or endogenous peptide (classical) loaded on class

I MHC complexes (d). : antigen; : exogenous peptide; : endogenous peptide; : Sec61; : TAP; : MHC class I molecules; : proteasome;

: proteases.
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[52,53]. For example, in a DNase II-/- interferon (IFN)-IR-/-

mouse model, where macrophages were unable to degrade
mammalian DNA and started the production of tumour
necrosis factor (TNF), activation of synovial cells was
observed resulting in chronic polyarthritis symptoms [53].

It can be deduced that the process of protein degradation
following phagosome maturation must be tightly regulated.
In DCs, the pH in phagosomes is kept near neutral (pH 7·5)
for the first few hours after phagocytosis [54]. This is in stark
contrast to rapid acidification that is seen in neutrophils and
macrophages, where the pH drops to 5 within 30 min after
phagocytosis [55]. Acidification of the phagosome, thereby
increasing the lysosomal protease activity, has been shown to
counteract cross-presentation in mice in a nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase complex
2 (NOX2)-dependent manner [54]. This indicates that DCs
have a unique ability to regulate proteolytic activity in pha-
gosomes, therefore controlling the amount of peptide des-
tined for cross-presentation. Rab27a-dependent inhibitory
lysosome-related organelles are involved in this pathway.
These organelles are recruited continuously to phagosomes
and limit acidification and degradation of ingested particles
in DCs, thus promoting antigen cross-presentation [56,57].
Being able to interfere with phagosome acidification, thereby
executing control of the rate of antigen cross-presentation,
could provide new opportunities in increasing the efficacy of
CTL targeting in DC vaccination.

The insulin-regulated aminopeptidase (IRAP) was impli-
cated in antigen cross-presentation in peptide cleavage for
generation of peptide substrates for class I MHC molecules
[58]. IRAP was found in the early endosome of human
monocyte-derived DCs and murine bone marrow-derived
DCs, where it co-localized with MHC class I molecules and
the mannose receptor (MR), but not with endoplasmic
reticulum aminopeptidases (ERAPs). IRAP-deficient mice
were capable of phagocytosis of antigen as well as presenting
endogenously produced peptides, but cross-presented exog-
enous antigens with 50–70% decreased efficiency compared
to wild-type mice [58]. IRAP-dependent cross-presentation
requires active proteasome and function of the adenosine
triphosphate (ATP)-binding cassette transporter family
member TAP (transporter associated with antigen process-
ing), but not lysosomal proteases. Therefore, this route of
antigen cross-presentation involves cytosolic antigen degra-
dation that is followed by peptide transport via TAP into
IRAP+ endosomes. However, IRAP as well as MR appear
dispensable for cross-presentation in murine splenic CD8a+

DCs but not mouse monocyte-derived DCs induced by
inflammation, suggesting a role for these two molecules in
inflammatory DCs, but not in steady-state CD8a+ DCs [59].

To allow for generation of peptides by the proteasome and
cytosolic peptidases, antigen must traverse from the phago-
some into the cytosol. Recent reports demonstrate that
peptide transfer across the phagosomal membrane occurs
via a selective, size-specific, reduction, unfolding (partial

proteolysis) and Sec61-dependent process [60–62]. Con-
versely, TAP transporters appear essential for peptide trans-
port from the cytosol into a class I MHC loading
compartment, as TAP knock-out mice are not capable of
cross-presenting exogenously acquired viral peptides [7].
Moreover, efficient cross-presentation required TLR-4- and
signalling molecule myeloid differentiation factor 88
(MyD88)-dependent relocation of TAP [63], essential for
peptide loading of class I MHC, to early endosomes/
phagosomes [64]. After processing in the cytosol, the gener-
ated peptides are transported via TAP either into the
endoplasmic reticulum (ER), thereby entering the canonical
class I MHC presentation pathway [13,47], or back into the
phagosomal pathway [64–66]. The latter situation is likely to
contribute to a rapid cross-presentation, as all necessary
components are in a separate class I MHC loading-
competent compartment that is distinct from the ER. Pep-
tides generated locally in the phagosomal pathway would not
undergo rigorous competition with the large pool of endog-
enous peptides for association with newly assembled class I
MHC complexes, as would occur in the ER. It has indeed
been shown that all relevant components of class I MHC
loading complexes are present in early phagosomes and that
these are functional [47]. How the necessary components are
transported from the ER to the phagosomes is not clear.
Phagosome–ER fusion was proposed [67], but other groups
were unable to confirm these findings [64,68]. The vacuolar
pathway is an alternative model that is based on notions of
proteasome- and TAP transporter-independent cross-
presentation, enabled by proteases that reside in late endo-
somes and lysosomes [49,69–71]. Most antigen cross-
presentation studies performed in human DCs to date focus
on this pathway, and less on proteasome/TAP-dependent
mechanisms [58,59,71]. As only peptide-bound class I MHC
molecules are transported to the plasma membrane,
peptide-exchange should be able to occur in the endosomal
encountered class I MHC molecules. Earlier in vitro experi-
ments have already suggested that peptide-receptive class I
MHC molecules can be generated under late endosomal/
lysosomal pH conditions [72]. Multiple pathways can
co-exist in the same cell type, indicating that these pathways
are compartmentalized and require sorting and specific
antigen targeting to specialized endosomal compartments
[49].

Antigen uptake routes by DCs control antigen
cross-presentation efficiency

To allow for the induction of specific adaptive immunity,
pathogens or antigenic components that are pathogen-
derived must be internalized by DCs for antigen processing
and display as peptide/MHC complexes at the DC surface. It
is clear that DCs can (cross-)present exogenous antigen
without being infected [13]. Antigen can be acquired directly
from the surrounding milieu, or can be received by a cross-

Antigen cross-presentation by dendritic cells

11© 2011 The Authors
Clinical and Experimental Immunology © 2011 British Society for Immunology, Clinical and Experimental Immunology, 165: 8–18



presenting DC from a distant site through transport by
migratory DCs. It has been shown that skin-derived migra-
tory DCs transfer antigen to lymph node-resident DCs for
efficient cross-presentation [73]. Secondly, it was shown that
tumours secrete exosomes that contain proteins, which can
be taken up by DCs. This system can facilitate anti-tumour
immunity [12]. Thirdly, DCs use gap junctions to gain
peptide antigens from adjacent cells. These peptides can be
used thereafter for cross-presentation [74].

To allow for antigen internalization, DCs are equipped
with a variety of receptors that can either directly recognize
pathogen-associated molecular patterns (PAMPS) or indi-
rectly via plasma complement (activated large proteolytic
fragments of complement proteins, C3b, C4b, iC3b and
C3d - collectively called C’) that binds to complement
receptors (CR1/CD35 and CR2/CD21). Immunoglobulins
(Ig) present in plasma bind the immunoglobulin receptors
(activating receptors FcRI, IIA and III and the inhibitory
FcRIIB). Both complement fragments and Ig are soluble
receptors present in plasma that bind structures on pathogen
surfaces to facilitate pathogen opsonization, internalization
and destruction. Secondly, small proteolytic complement
protein fragments (i.e. C3a, C4a, C5a) act as chemoattracta-
nts to recruit and activate new phagocytes. CRs and FcRs
allow for internalization after binding C’- or Ig-opsonized
antigens. Antigen opsonization with Ig rather than C’ facili-
tates antigen cross-presentation [57], thus supporting a role
for Ig rather than C’ in tailoring appropriate antigen-specific
adaptive immune responses.

DCs use multiple additional membrane-expressed recep-
tors for the internalization of antigens. The presence and

dominance of these receptors differs between DC subpopu-
lations within species and between DC subpopulations, as
compared between mouse and human [26]. Targeting spe-
cific receptors can drive the immune response either towards
class II MHC-restricted CD4+ T helper cell responses or to
class I MHC-restricted CD8+ cytotoxic T cell responses via
cross-presentation, and can therefore be an effective method
for inducing anti-viral or anti-tumour CTL responses [46].
In both mice and humans, the presence of many different
uptake receptors has been shown (Table 1).

Uptake via distinct endocytic receptors controls the effi-
ciency of cross-presentation of peptide/class I MHC com-
plexes to CD8+ T cells. The effects of individual uptake
receptors on antigen targeting to the class I or class II MHC
presentation route seem to be roughly conserved between
mice and humans, but opposing effects of some receptors
related to endosomal targeting and processing of antigens
have been found. In mice, antigen cross-presentation is pro-
moted when antigen uptake occurs via MR [45], DEC205
[80,83,88,92,93], dectin-2 [89], DNGR-1 [94], FcgR
[57,76–80] and LOX-1 [90]. Also in human cells, antigen
cross-presentation is promoted upon antigen uptake via
DEC-205 [83,84], DC-SIGN [85,86] and FcgR [81] in vitro
as well as in vivo MR targeting in a humanized mouse model
[95]. However, in contrast to the results in mice,
MR-mediated antigen uptake induced CD4+ T cell responses
by human DCs [82]. Antigen targeting to dectin-1 [88],
DCIR-2 [46,80] and CD40 [96] induce CD4+ T cell responses
in the mouse. Langerin (CD207)-targeted uptake induces
both CD4+ and CD8+ T cell responses [80]. In humans,
antigen cross-presentation is favoured by uptake via DCIR

Table 1. Receptors involved in targeting antigen to the class I or class II major histocompatibility complex (MHC) antigen presentation pathway in

mouse and human dendritic cells [26,38,39,41,75].

Mouse Human

Activating Fc receptors

Fcg receptors (FcgR)

Fcg I (CD64)

Fcg II (CD32) MHC I [57,76–80] MHC I [81]

Fcg III (CD16)

Pathogen recognition receptors (PRRs)

C-type lectin receptors (CLRs)

Type I

Mannose receptor (MR/CD206) MHC I [45] MHC II [82]

DEC205 (CD205) MHC I [23,80] MHC I [83,84]

Type II

DC-SIGN (CD209) n.a. MHC I [85,86]

Langerin (CD207) MHC II/ MHC I [80] n.d.

DCIR (CLEC 4A) MHC II [46,80] MHC I [87]

Dectin I MHC II [88] MHC I (CLEC 9A) [27]

Dectin II MHC I [89] n.d.

LOX-1 MHC I [90] n.d.

Scavenger receptors (SR)

SR-A1 and SR-A2 n.d. n.d.

SR-B1 (CD36) n.d. MHC I [91]

The involvement of complement-receptors and Toll-like receptors has not been determined. n.d., not determined; n.a., not applicable.
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[87]. These examples underscore that knowledge on
receptor-mediated cross-presentation in mice cannot always
be translated immediately to the human system. Because
enhancing cross-presentation can be an effective means to
improve CTL responses in diverse DC vaccination pro-
grammes, more research about receptor targeting in the
human system is needed.

Antigen uptake routes in DCs can be decisive in
induction of immunity or tolerance

Cytotoxic CD8+ T cells directed to virus-infected cells are
considered crucial for efficient anti-viral responses. In par-
allel, the elicitation of tumour-directed CTLs is considered
crucial for effective anti-tumour responses to occur. Consid-
ering tumour-associated antigens, dead tumour cells are a
major antigen source for APCs [91]. For example, Asano
et al. showed that dead tumour cells traffic via the lymph
vessels to the tumour-draining lymph node where dead
tumour cell-associated antigens are internalized by APCs
and cross-presented to CD8+ T cells [97]. In cancer therapy,
many investigators have taken advantage of the immunoge-
nicity of tumour-associated antigens for tumour vaccina-
tion, either by direct injection of dead tumour cells [98] or
using DCs loaded with dead tumour cells [99].

For pathogen-associated antigens, a large pool of antigens
is also available in cells that are dead or dying as a conse-
quence of the pathogen infection, forming a rich source of
antigens for loading into the cross-presentation pathway. It is
demonstrated that cells dying from infection are engulfed by
APCs for CD8+ T cell activation by cross-presentation. For
example, virally infected dying cells such as influenza A [91],
Epstein–Barr virus [100] and canarypox virus [101] or bac-
terially infected dying cells from Salmonella typhimurium
[102] induce CD8+ T cell responses. It is clear from these
examples that providing antigen in the form of dead cells can
be a powerful tool to favour cross-presentation of the
antigen.

However, not all dead cells are immunogenic and induce
cross-presentation. In humans, it is estimated that under
homeostatic conditions approximately 1 million cells turn
over each second, which does not generally result in autore-
activity [103]. However, deficiencies in the clearance of these
dead cells can results in autoimmune disorders (i.e. systemic
lupus erythematosus in individuals lacking early compo-
nents of the complement cascades), indicating its role in
maintenance of self-tolerance. Clearly, this example shows
that the immune system is able to process dead cells in a
tolerogenic or immunogenic manner, depending on several
factors. As reviewed by Green et al., these factors are related
to the type of cell death, the cell death pathway, how the dead
cells are engulfed, the engulfing cell, where the engulfment
takes place and which cells of the immune system eventually
encounter the antigens presented along with the dead cells
[104]. Clarification (and possibly modulation) of these pro-

cesses should provide a venue for development of efficient
cross-presentation routes that can be exploited in DC vacci-
nation strategies. Several such attempts are exemplified in
experiments on heat shock protein (HSP)-associated antigen
uptake. HSPs are intracellular chaperone molecules that
associate readily with neighbouring proteins, such as with
antigen inside tumour cells. Injection with HSP, e.g. HSP 70,
HSP 90 and glycoprotein (gp)96 induces CTL responses
against the cells from which the HSPs were isolated
(reviewed in [105]). While HSPs may not be essential for
antigen cross-presentation, they have been shown to
promote antigen cross-presentation using in vitro assays
employing multiple cell lines as well as primary mouse and
human immune cells [105–109]. The myeloid differentiation
factor 88 (MyD88) is essential in the developmental matu-
ration of DCs that allows them to prime CD8+ T cells
through cross-presentation after uptake of HSP-coupled
antigen [63].

Clinical experience with anti-tumour and anti-viral
DC-vaccines

In recent years, multiple insights were obtained in mecha-
nisms that underlie cross-presentation in mouse as well as
human cells. The primary cross-presenting CD8a+ DC in
mice was identified, and groups around the world are cur-
rently investigating what seems to be a human homologue,
the human CD141+ DC. Distinct pathways are shown to be
present in the murine system, and more knowledge is being
increasingly gathered about the cross-presentation pathways
in the human system. These mechanisms are not always con-
served between species, which alerts us that knowledge gath-
ered in mouse systems cannot be extrapolated to the human
system without risk.

While our knowledge in antigen presentation biology
increases, the potential benefit of its function is being
explored in patients. In the last 15 years, at least 50 Phase I
and Phase II trials in humans were performed using DC
vaccination as anti-tumour [45,110–118] or anti-viral treat-
ment [119,120] related to allogeneic stem cell transplanta-
tion (SCT) in both adult and paediatric settings (references
[113,115–118] and [110–112,114,120], respectively). The
main focus of these Phase I/II studies was safety, and none
reported serious direct side effects. Although the studies
were not set up for evaluation of effectiveness of induction of
CTL responses, disease regression/prevention and immune
responses were measured. In general, anti-tumour responses
were minimal [110,112,114,117], as reviewed by Rosenberg
et al. [121]. One recent study performed in 10 AML patients
after at least one anti-leukaemic chemotherapeutic regimen,
but not end-stage disease, showed more promising results. In
this study, vaccination with DCs loaded with mRNA encod-
ing Wilms’ tumour 1 (WT1) protein induced complete
remission in three of 10 patients and temporary remission in
two additional patients. Moreover, an increased frequency of
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WT1-specific CD8+ T cells was found in two of five tested
HLA-A0201+ patients, correlating significantly with long-
term response [118].

There are more examples of DC vaccination studies in
which the induction of T cell responses was measured. For
example, in studies in stage IV melanoma patients, peptide-
pulsed CD34+ progenitor cell-derived DCs induced both
CD4+ and CD8+ T cell responses [115,116]. Also, in patients
suffering from breast cancer, DCs loaded exogenously with
peptides derived from the human epidermal growth factor 2
(HER-2)/neu proto-oncogene and the epithelial mucin
MUC1 lead to an induction of peptide-specific CTLs and
decrease in serum amount of tumour markers [113]. DC
vaccination in 35 non-Hodgkin B cell lymphoma patients
targeting tumour-specific immunoglobulin resulted in a
tumour regression rate of 31·6% [122]. In studies aimed at
the induction of anti-viral immunity after allogeneic SCT,
targeted mainly at human cytomegalovirus (HCMV), vacci-
nation with pp65-pulsed DCs induced a sustained antigen-
specific CD4+ T cell response; CTL responses were not
assessed [120]. HCMV peptide-loaded DCs induced
HCMV-specific CTL responses in five of 24 SCT patients at
risk for HCMV after allogeneic SCT [119].

As described, the results from anti-tumour and anti-viral
clinical trials show a modest immunological response, which
may not yet result in an increase in patient survival. As most
of these studies were designed as Phase I and Phase II safety
studies the included patient groups tend to be late in disease
progression (with a relatively high residual tumour load or
already with virus-associated disease). Patients with a sub-
stantially lower tumour load and absent viral disease may be
more likely to show benefit from induced specific anti-
tumour or anti-viral activity, as also suggested by recent
results [118]. Conversely, the potency of immunological
responses was far from optimal, and provides opportunities
for improvement. New information on human DC subsets
and education of DCs allow for the optimization and
improvement of current DC vaccination strategies. Distinct
DC subsets offer unique possibilities in DC vaccination
strategies [123]. In addition, priming DCs in a specific way
determines the immunological outcome, which can be
accomplished by inclusion in vaccine formulations of
ligands to TLRs [124] and non-obese diabetic-like receptors
(NLRs) [125] and may work through modulation of the DCs
migratory and T cell stimulatory capacity. Secondly, in
reported studies thus far, the elicitation or reactivation of
CD4+ T cell responses can often be observed, and even
humoral anti-tumour responses can be measured. Class I
MHC-restricted CD8+ T cell responses are the focus in only
a minority of papers, while it is CTLs that are key players in
anti-tumour and anti-viral immunity. Therefore, the induc-
tion of potent antigen cross-presentation should be espe-
cially explored in current human immunology studies.
Clarification of the mechanisms that increase the amount of
peptide/class I MHC complexes is pivotal for the develop-

ment of next-generation DC-based anti-tumour and anti-
viral intervention strategies.
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